Welcome and Introductions

Lisa Prcin Watershed Coordinator Texas AgriLife Research at Blackland Research & Extension Center

Past Business

Lisa Prcin Watershed Coordinator Texas AgriLife Research at Blackland Research & Extension Center

Steering Committee Meeting December 2009

- Addition of 2 new Steering Committee members
 - David Cole
 - Kempner Water Supply Corporation
 - Lee Kelley
 - Central Texas Water Supply Corporation
- Basics of Nonpoint Source Pollution
- Introduction to Modeling
 - Load Duration Curves

 SELECT (Spatially Explicit Load Enrichment Calculation Tool)

Technical Advisory Group Meeting February 2010

- February 3rd at Texas AgriLife Blackland Research and Extension Service in Temple
- > 25 people in attendance from 13 agencies/organizations
 - Local
 - City of Killeen
 - Brazos River Authority
 - Clearwater Underground Water Conservation District
 - Little River-San Gabriel Soil and Water Conservation District
 - State
 - Texas Commission on Environmental Quality
 - Texas Department of Agriculture
 - Texas Parks and Wildlife Department
 - Texas State Soil and Water Conservation Board
 - Texas Water Resources Institute
 - Federal
 - U.S. Army Corps of Engineers

- U.S. Environmental Protection Agency
- U.S. Department of Agriculture Natural Resources Conservation Service
- Community Organizations
 - Lake Stillhouse Hollow Cleanwater Steering Committee

Technical Advisory Group Meeting February 2010

- Agenda
 - Why was the Lampasas River Watershed Selected for a WPP?
 - Status of the Lampasas River Watershed Partnership
 - Historical and Current Monitoring Efforts within the Lampasas River Watershed
 - Existing Data and Gaps

- Modeling Approach and Input Needed from TAG Members
- Incorporating Agency Programs and Funding Mechanisms into the WPP

TCEQ Surface Water Quality Monitoring Meeting – February 2010

- Product of February TAG meeting
- February 24th
- Conference call participants
 - Brazos River Authority

- Texas AgriLife Blackland Research and Extension Center
- Texas Commission on Environmental Quality
- Texas State Soil and Water Conservation Board
- Data that originally placed the Lampasas River on the 303(d) list no longer meets the new criteria
- TCEQ is considering removing the river from the 2010 Integrated Report (a combination of the 303(d) list and the Texas Water Quality Inventory)

- Public comment period ended Monday 3/8
- Due to short notice, the Partnership was not able to submit comments
- A letter/email was sent to Steering Committee members asking them to submit their own comments to TCEQ
- TCEQ must consider and respond to all comments and then new list must be approved by the TCEQ and U.S. EPA

 TSSWCB submitted the following comment regarding the Lampasas River:

"The Assessment Guidance states on page 2–13 "In order to ensure that minimum sample size requirements can be met for determining use support, the period of record will be extended back in time, up to ten years, until the minimum sample number is identified. At least half of the samples (five samples) must come from the most recent seven-year sample period." Further, the Assessment Guidance indicates that when only fecal coliform data is availabe, fecal coliform will be used to determine use support. But must this data still satisfy the temporal requirements? TSSWCB understands the only data available to assess bacteria criteria for segment 1217 is fecal coliform data, all collected beyond the 7 year period of record. It would seem that delisting of this waterbody would be appropriate. The consistent assessment of waterbodies with data conditions like 1217 would help deal with TCEQ's previous practice of carrying forward the assessment information from only the last period that had a complete data set."

Carried Forward

- Lampasas River, 5c, bacteria
 - 1217_04
- North Fork Rocky Creek, 5c, Depressed Dissolved Oxygen
 - 1217D (entire stream segment)
- New Listings
 - Sulphur Creek, 5c, Depressed Dissolved Oxygen
 - 1217B_02

- Removal from the list does NOT eliminate the need for a WPP
- If delisting occurs, it will not be because river has improved or is no longer impaired
- Delisting will be because assessment criteria has changed
- WPP allows us to sustain and protect our water quality in our transitioning watershed
- WPP allows us to identify other concerns... not just bacteria

Questions?? >>

Water Quality Data Analysis in the Lampasas River Watershed Steve Potter

Texas AgriLife Research

Blackland Research & Extension Center

spotter@brc.tamus.edu

254-774-6038

With all thy getting, get understanding.

Sulphur Creek at the city park in Lampasas, TX

Topics

- Major Hydrologic Features of the Lampasas Watershed
- Monitoring Data Quantity & Quality
- Data Trends & Patterns
- Wrap up: Understanding => Wise Solutions

Ground-Surface Water Interactions in Lower Watershed

Stream name	Lampasas R iver	Lampasas R iver	Sulphur Creek	Sulphur Creek	
Reach length (river mi)	79.8	15.7	3.67	3.67	
Total no. of measurement sites	22	6	9	9	
No. of measurement sites on main channel	12	4	6	6	
Major aquifer outcrop intersected by reach	Edwards, Trinity	Edwards	Trinity	Trinity	
Total gain or loss (-) in reach (CFS)	-5.5	15.88	15.2	11.7	
Gain or loss per mile of reach	069	1.011	4.142	3.188	
Reference	USGS (1964)	USGS (1969)	TBWE (1960)	TBWE (1960)	

В

Stream Gain/Loss Studies in the Lampasas

AgriLIFE RESEARCH Texas A&M System

Monitoring Data Quantity & Quality

USGS Gage Site at South Rocky Creek

Monitoring Data Quantity & Quality

- Historic monitoring sites and USGS gage locations
- Are there sufficient monitoring data across time and space to evaluate water quality in the Lampasas River?
- What, if any, are the watershed-specific conditions or factors which may affect or limit our ability to evaluate the water quality?
- Strengths and weaknesses of available monitoring data
 - Key time, space, and parameter limitations

Total Sample Counts by Assessment Unit												
AU	Num. Stations	E Coli	FECAL COLIFORM	FLOW STREAM, INSTANT- ANEOUS	NITRITE PLUS NITRATE	ORTHO- PHOSPHATE	CHLORIDE	SULFATE	TDS	TSS	Grand Total	
1217_01	3	74	187	39	114	56	240	241	67	243	1261	
1217_02	1	37	36	82	74	60	84	83	31	89	576	
1217_03	1	 	15	 	15	1	14	14	l	16	74	
1217_04	1	2	12	4	13	l	12	12		13	68	
1217_05	1	 	14	3	15		14	13	 	15	74	
1217A_01	4	17	17	65	77	18	81	79	52	85	491	
1217B_01	4	83	41	28	92	97	98	97	39	1	575	
1217B_02	6	78			73	80	82	78	25	1	416	
L217B_02 ³	1	7			7	7	7	7		1	35	
1217C_01	1	1	13	1	14	14	13	12		1	67	
1217D_01	1	 	1	15	11	11	11	11	12		71	
1217E_01	3	I I	38	86	72	47	79	80	67	31	500	
1217F_01	2	6	1	2	9	9	9	9		1	44	
Grand Tot	al	304	373	325	586	399	744	736	293	492	4252	

Temporal Trends

Changes Over Time

Has the water quality changed over time (years)? If so, how?

Spatial Trends

- Spatial
 - How does the water quality change along the river from headwaters downstream to the outlet at the lake?
 - How do inputs from tributaries affect river water quality?
 - Can interactions between time and space and space be revealed in the data?

Flow Duration Curves for Lampasas River

Flow Exceedance Probability (Percentage of days streamflow exceeds cubic feet per second values on vertical axis.)

> <u>Drought</u>

USGS Kempner Gage USGS Yourgsport Gage

Flow (cfs)

Operation: 1962 - 2010 Operation: 1924 - 1980

Drains 818 square miles Drains 1240 square miles

Example Load Duration Curve

Example Load Duration Curve

Example Load Regression Model

LDC Usefulness (source ID based on LDC)

Load Duration Curve Analysis

Fecal Coliform

Fecal Coliform LAMPASAS RIVER AT US 84 Criteria: 200 cfu per 100 ml Site: 1217_05_15762 Sample Count: 14 1998 – 1999 High Moist Mid-range Dry Low Flows **Conditions** Flows Conditions Flows 1,000.0 \diamond \diamond Maximum Allowable 100.0 Load 10.0

(Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

Drought

AgriLIFE RESEARCH

Texas A&M System

Fecal Coliform LAMPASAS RIVER AT CR 105 Criteria: 200 cfu per 100 ml Site: 1217_05_15770 Sample Count: 12 1998 – 1999 High Moist Mid-range Dry Low Flows **Conditions** Flows **Conditions** Flows 10,000.0 Maximum Fecal Counts (billions cfu/Day) \diamond ⊘ Allowable Load ∞ \diamond ♦ Sample \diamond Data \diamond

Ô

Mean 60 80 10 20 30 40 50 70 90 100 0 **Flow Exceedance Probability**

(Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

Geometric

LAMPASAS RIVER AT FM 2313

Site: 1217_05_16404 1998 – 1999

Fecal Coliform Criteria: 200 cfu per 100 ml Sample Count: 15

Drought

AgriLIFE RESEARCH

Texas A&M System

≻

(Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

SULPHUR CREEK AT LAMPASAS CR 8 Site: 1217B_01_15250

1996 – 2004

Fecal Coliform Criteria: 200 cfu per 100 ml Sample Count: 39

Drought

AgriLIFE RESEARCH

Texas A&M System

(Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

Lampasas River near Kempner, TX **Fecal Coliform** Criteria: 200 cfu per 100 ml Site: 1217_02_11897 Sample Count: 36 1998 – 2004 High Moist Mid-range Dry Low Flows Conditions Flows **Conditions** Flows 100,000.0 Maximum 10,000.0 Allowable \diamond Fecal Counts (billions cfu/Day) o r o 0 00 o 0 0 0 \diamond Load \diamond ∞ ♦ Sample Data \diamond $\diamond \diamond$ \diamond \diamond \diamond \diamond Geometric Mean 60 80 10 20 30 40 50 70 90 100 0 **Flow Exceedance Probability**

(Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

AgriLIFE RESEARCH Texas A&M System

Drought

Rocky Creek Site: 1217A_01_11724 1998 - 1999

Fecal Coliform Criteria: 200 cfu per 100 ml Sample Count: 15

Flow Exceedance Probability (Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

Drought

LAMPASAS RIVER AT FM 2484 Site: 1217_02_11895

1973 – 2004

Fecal Coliform Criteria: 200 cfu per 100 ml Sample Count: 84

Drought

AgriLIFE RESEARCH

Texas A&M System

(Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

E. Coli

LAMPASAS RIVER AT CR 105

Site: 1217_05_15770 2009

E. Coli Criteria: 126 cfu per 100 ml Sample Count: 2

Drought

AgriLIFE RESEARCH

Texas A&M System

(Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

SULPHUR CREEK AT LAMPASAS CR 8

Site: 1217B_01_15250

2001 – 2009

E. Coli Criteria: 126 mpn per 100 ml Sample Count: 55

Drought

AgriLIFE RESEARCH

Texas A&M System

(Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

Lampasas River near Kempner, TX E. Coli Criteria: 126 mpn per 100 ml Site: 1217_02_11897 Sample Count: 37 2001 - 2009High Moist Mid-range Dry Low Flows **Conditions** Flows **Conditions** Flows 1,000,000.0 Maximum 100,000.0 Allowable Load E. coli Counts (billions MPN/Day) \diamond 10,000.0 ٥ ♦ Sample 1,000.0 Data \diamond 100.0 $\diamond \diamond$ \diamond \diamond \diamond \circ \diamond Geometric 10.0 Mean \circ 1.0 60 8o 10 20 30 40 50 70 90 0 100 **Flow Exceedance Probability**

(Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

AgriLIFE RESEARCH

Drought

Rocky Creek Site: 1217A_01_11724 2006 - 2009

E. Coli Criteria: 126 mpn per 100 ml Sample Count: 17

Flow Exceedance Probability (Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

Drought

LAMPASAS RIVER AT FM 2484 Site: 1217_02_11895

2004 – 2008

E. Coli Criteria: 126 mpn per 100 ml Sample Count: 59

Drought

AgriLIFE RESEARCH

Texas A&M System

(Percentage of days streamflow exceeds cubic feet per second values on Flow Duration chart vertical axis.)

"The beginning of wisdom is: Get wisdom."

Proverbs 4:17

ampasas Watershed in Burnet County

Next Steps

Lisa Prcin Watershed Coordinator Texas AgriLife Research at Blackland Research & Extension Center

Clean Rivers Program Steering Committee Meeting

- 10 a.m. on March 31st at the Brazos River Authority Office, Waco
- Current status of waterbodies and ongoing efforts in the Brazos River Basin
- Discuss 2011 monitoring plans

- Requests may be made for additional monitoring
- Requests will be taken to the Coordinated Monitoring meeting

Clean Rivers Program Steering Committee Meeting

- TCEQ Special Bacteria Study at Station 15770 (red circle on map)
- Areas that the Partnership wants more monitoring?
- Volunteers to attend the CRP Steering Committee Meeting?

Work Group Meetings

- Work Group meetings in April and May
- April WG meetings
 - Land Use / Land Cover Maps
 - Introduction into the SELECT model
 - Identify potential sources and model inputs

Work Group Meetings

- Initial meeting times:
 - Agricultural Issues
 - 3rd Monday, 6-9 p.m.
 - April 19th
 - Waste Water Infrastructure -
 - 2nd Wednesday, 2-5 p.m.
 - April 14th
 - Habitat and Wildlife
 - 2nd Monday, 6–9 p.m.
 - April 12th
 - Urban / Suburban Issues -
 - 2nd Wednesday, 6-9 p.m.
 - April 14th
 - Outreach and Education
 - 3rd Tuesday, 2-5 p.m.
 - April 20th

Thank You!

Lisa Prcin Watershed Coordinator Texas AgriLife Blackland Research and Extension Center 254-774-6030 Iprcin@brc.tamus.edu

