Why Was the Lampasas River Watershed Selected for a WPP?

Pamela Casebolt Texas State Soil and Water Conservation Board

Lake Stillhouse Hollow Clean Water Steering Committee

- Established in 2003
- Focused primarily on the area of influence of Stillhouse Hollow Lake and backwater portion of the Lake that extends into the Lampasas River
- Source Water Protection Plan
- Clean Rivers Program Special Study with Brazos River Authority

Soil

Water

How Did Lampasas River Get Selected?

- Existing active stakeholder groups
- Water quality impairment for bacteria and depressed dissolved oxygen
- Predominately rural watershed

How Did Lampasas River Get Selected?

- AgriLife Research submitted a proposal to TSSWCB for a Clean Water Act Section 319(h) Nonpoint Source grant from the U.S. Environmental Protection Agency to develop a WPP for the Lampasas River
- TSSWCB and USEPA funded the WPP and AgriLife Research began engaging potential stakeholders and collecting existing data and information to be used in this watershed planning process
- 3 year contract beginning in 2007
 - \$ 498,422 (federal); \$830,703 (project total)

Roles

- Texas AgriLife Research
 - Facilitate the stakeholder process
 - Collect and analyze data
 - LDCs, Land Use/Land Cover, SELECT modeling
 - Write the WPP based on stakeholder decisions
- Texas State Soil and Water Conservation
 Board
 - Ensure WPP satisfies EPA's 9 elements

Importance of WPPs

- Critical to the Texas Nonpoint Source Management Program
- Restore water quality and achieve "swimmable and fishable" designated uses

WPPs Across Texas

TAG Involvement

- Provide guidance and direction to stakeholders on:
 - Technical understanding of water quality conditions and assist with finding solutions
 - Agency programs to solve water quality issues (technical and financial assistance)
 - How can your programs can be implemented in this watershed

Websites

- TSSWCB Watersheds
 - http://www.tsswcb.state.tx.us/watersheds#lampasasr iver
- Lampasas River Watershed (Texas AgriLife Research)
 - http://lampasasriver.org

Thank You!

Pamela Casebolt Texas State Soil and Water Conservation Board <u>pcasebolt@tsswcb.state.tx.us</u> 254-773-2250 ext. 247

Historic and Current Monitoring Efforts within the Lampasas River Watershed

June Wolfe III Water Science Laboratory Texas AgriLife Research – Temple Blackland Research and Extension Center, Temple

Overview

- Personal experience
- Brazos River Authority Clean Rivers Program
- Texas Commission on Environmental Quality Bacteria Special Study
- Texas State Soil and Water Conservation Board Bacteria Source Tracking
- Discussion

Personal Experience

Brazos River Authority

Clean Rivers Program Water Quality Monitoring

Jenna Barrett Water Quality Programs Manager 254-761-3149 jbarrett@brazos.org

Texas Commission on Environmental Quality

Bacteria Water Quality Sampling and Analysis in Specified Stream Segments

Eric Reese Project Manager TMDL Program 512/239-5936 ereese@tceq.state.tx.us

FY2010 Monitoring

- One station on Lampasas River mainstem monitored quarterly
 - Station 11897 LAMPASAS RIVER AT US 190 is monitored quarterly for conv, bact, flow, field
 - Two Biological Assessments in 2010
 - Habitat + benthic + nekton + 24 hr DO
- Four tributaries stations monitored quarterly
 - 18783 SULPHUR CREEK AT US 183
 - 18760 SULPHUR CREEK UPSTREAM OF LAMPASAS WWTP
 - 15250 SULPHUR CREEK AT CR 8 (Hallmark Crossing)
 - 11724 ROCKY CREEK at FM 963

303(d) Listings

- Segment 1217 Lampasas River Above Stillhouse Hollow Lake
 - First Listed in 2002 for not supporting Contact Recreation, due to elevated bacteria
 - 1217_04 From the FM 1690 crossing to the CR 117 crossing, (Station 15770) is the portion of the stream that resulted the listing
 - 1217_05 From CR 117 crossing to the upper end of the segment, (Station 15762) was listed as having a concern for Contact Recreation due to elevated bacteria
 - 1217_05 was listed in error, will be corrected in 2010 list
 - 2010 Data providers pre-draft list, new listings
 - 1217b_02, Sulphur Creek, ALU, DO 5c
 - 1217D_01, N Fork Rocky Creek, ALU, DO, 5b
 - 1216A_01, Trimmier Creek, Rec, bacteria, 5c

303(d) Listings

1217_04 Station 15770 LAMPASAS RIVER AT CR 105

(6 miles north of Adamsville)

- Fecal coliform data collected from 6/98 through 7/99
- 12 samples collected
 6 samples contained >400 CFU
 Geometric mean was 235 CFU (>200 CFU is non-supporting)

Dissolved Oxygen Grab Data
N = 13

Average = 8.1 mg/l

303(d) Listings

Unclassified Segment 1217D – Station 18334 – NORTH FORK ROCKY CREEK SOUTHERN FM 963 CROSSING

First Listed in 2006 for not supporting designated Aquatic Life Use (ALU) due to low 24-hr average Dissolved Oxygen

24-hr Dissolved Oxygen data was collected from 8/02 through 9/04.

There were 13 events
 Of these, 5 events produced samples that were <3 mg/L

Bacteria Water Quality Sampling and Analysis in Specified Stream Segments

- Funded by TCEQ
- Contract with TIAER
- One station 15770
- •24 ambient water quality sampling events
- September 2009 August 2011 (monthly)
- Collecting *E. coli*, field parameters, flow

Station 15770 - Sep 2009

Station 15770 - Oct 2009

Outcomes

- Preliminary data, 2 events in 2009
- Dataset for the 2012 Water Quality Inventory
- Assessment of use attainment using *E. coli* indicator
- Assessment probably based on revised 2010 Water Quality Standards
- Dataset used for analyses and modeling

Inform future activities in the watershed

Bacteria Source Tracking

Goal: Identify sources of elevated bacterial levels

•Proposed, not yet funded, Spring 2010 tentative start

•Texas State Soil and Water Conservation Board • Project funding

•Texas Water Resource Institute •Project coordination and administration

Bacteria Source Tracking

- •Texas AgriLife Research Temple Blackland Research and Extension Center
 - •Collect samples, measure stream flow
 - •12 locations,18 sampling events (monthly)
 - •Enumerate E. coli using membrane filtration method
 - •Ship samples to El Paso lab
- Texas AgriLife Research El Paso
 Culture *E. coli,* extract DNA
 Sequence DNA using ERIC-PRC and RP combo method
 Compare to "known source" library

Lampasas River Watershed Technical Advisory Group Meeting 3 February, 2010

Texas AgriLife Research at Blackland Research & Extension Center

Technical Advisory Group Meeting 3 February, 2010

Welcome and Introduction

Technical Advisory Group Meeting 3 February, 2010

Status of the Lampasas Watershed Partnership

Steve Potter Texas AgriLife Research at Blackland Research & Extension Center **Goal:** Lampasas River fully meeting its designated uses for contact recreation and a healthy aquatic ecosystem

To have an adequate chance of success, watershed protection plan must have a reasonably high probability of:

- being implemented
- 2) bringing the river into full compliance of its designated uses within a 10 to 15-year period.

- ✓ Stakeholder participation is critical
- ✓ Outreach key to reaching project goal

Stakeholder Outreach: Build Consensus and Build Capacity.

Building Consensus

Help stakeholders

- a) identify a common vision,
- b) reach agreement on a plan to realize that vision, and
- c) formulate a strategy to implement the plan.

How?

- Listening Sessions
- Watershed Partnership
- Technical Liaisons

Listening Sessions

Important Phase

- Lampasas Watershed proximity to Leon and Bosque Watersheds
- Gain Approval of Key Political Leaders
- Build Relationships & Trust

Watershed Partners Spring 2009

Over 40 land owners, water users, and public officials attended a meeting in Killeen, TX to learn about the Lampasas River Watershed and the watershed partnership.

Four days later, 75 more stakeholders attended a similar meeting in Lampasas, TX.

Steering Committee Meeting November 2009

Established

- Watershed Partnership
- Steering Committee and
- Work Groups

Representatives from upper, middle, lower WS

Status of the Lampasas Watershed Partnership

Workgroups

- Wastewater Infrastructure
- Agricultural Issues
- Habitat & Wildlife
- Urban/Suburban Issues
- Outreach & Education

Status of the Lampasas Watershed Partnership

- 12-month schedule to complete draft WPP
 - Expected late Fall/early winter 2010
- Watershed Tour

Technical Advisors

- Current
- **TSSWCB**
- Local County Extension Agents
- Texas A & M

Establish

State and Federal Agency Partners

Building Capacity

Over 60 stakeholders attended a full day "Watershed Stewards" course to learn about the water cycle, watershed health, and the Lampasas River.

Steering Committee Meeting December 2009

Primarily Educational

- Interpreting Water Quality Data
- Impairment Source ID Methodologies

a core message to stakeholders

there is only one key to success; don't stop.

Community stakeholders will need help and support.... through strong partnerships

Technical Advisory Group Meeting

Existing Data & Gaps

Steve Potter Texas AgriLife Research at Blackland Research & Extension Center

Data and Knowledge Gaps

Significant Surface – Ground Water Interactions Need better understanding of area geology.

Sulphur Creek: Lack of long-term flow records in Sulphur Creek (28 points only for instantaneous measured flow). Poor fit to average daily flow at Kempner. Graphs/Maps. Discuss possible methods of extending record.

- Flow records / estimates for springs,
- Discharge from OMI WWTP,
- Daily well (water table elevation) records.
- Dilution factor method
- Other Ideas?

Lower Lampasas (between Kempner and Youngsport loses water during droughts; gains during wet and normal periods.

Kempner Gage vs Measure Flow at Sulfur Creek

Kempner Daily Flow vs Instantaneous Flow (15250)

Date	11724	11896	11897	15250	Kempner	15762	18330	18331	18332	18333	18334
11/6/1996		20		14	20						
2/3/1997		111		19	115						
4/22/1997				69	550						
8/7/1997		67		27	70						
2/2/1999	17			24	153						
4/13/1999	1.9			4.2	210						
7/12/1999				28	56	0.5					
10/2/2001			16	20.8	16						
12/20/2001			76	45.7	90						
2/12/2002		118		25.06	130						
3/18/2002		82		14.53	73						
4/3/2002		99		27.15	87						
5/8/2002		44		18.64	42						
6/4/2002			31	16.06	27						
8/5/2002	19.81		70	35.24	68		19.64	1.85	34.56	10.79	12.48
9/19/2002			51	29.91	29						
10/10/2002			24	22	26						
11/25/2002			67	24	77						
12/10/2002			139	43	145						
1/15/2003			99	40	110						
2/4/2003				22	66						
3/5/2003			445	69	352						
3/31/2003			115	43	127						
6/3/2003			23	22	26						
7/2/2003			31	4.6	32						
8/5/2003			26	15	19						
1/22/2004			25	17	26						
4/19/2004			88	17	87						
Count	3			28	28	1	1	1	1	1	1

Data and Information

- TCEQ: Use Attainability Assessment for Rocky Creek?
- TCEQ: CAFO and WWTF and Point Sources
- Numbers of septic systems and distribution?
- Methods to estimate and distribute numbers of wildlife, birds, and feral.
- Methods to distribute livestock across watershed?
- Duck pond fecal loading rates?

Water Quality Data

- Are numbers of E coli data sufficient for analysis? Fill in with fecal?
 Discuss graph of Fecal x E Coli that show poor correlations.
- a. Discuss other water quality parameters w/respect to sufficient data to get probability distributions.
- b. TDS vs Specific Conductance. Discuss graphs of Conductance xTDS. Can we use data to extend TDS data?
- c. Should we combine data which is similar but not exactly the same?

Example:

Orthophosphate 671 ORTHOPHOSPHATE PHOSPHORUS, DISS, MG/L, FLDFILT<15MIN 70507 ORTHOPHOSPHATE PHOSPHORUS, DISS, MG/L, FILTER >15MIN and NO2+NO3 630 NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/LAS N) 593 NO2 PLUS NO3-N, TOTAL, WHATMAN GF/F FILT (MG/L)

631 NITRITE PLUS NITRATE, DISS 1 DET. (MG/LAS N) 620 NITRATE NITROGEN, TOTAL (MG/LAS N) + 615 NITRITE NITROGEN, TOTAL (MG/LAS N)

Total Sample Counts by Assessment Unit and Station.

AU	E Coli	FECAL FLOW STREAM,		NITRITE PLUS	ORTHO-	CHLORIDE	SULFATE	TDS	TSS	Grand Total
Station ID		COLIFORM	INSTANTANEOUS	NITRATE	PHOSPHATE					
	74	107	20	11/	FC	240	241	67	242	1261
11005	74	18/	39	114	50	240	122	67	243	710
11895	64	84	20	67	49	132	133	50	134	719
11896	4	103	39	40		101	101	11	102	501
18761	6				/	/	/		/	41
1217_02	37	36	82	74	60	84	83	31	89	576
11897	37	36	82	74	60	84	83	31	89	576
1217_03		15		15		14	14		16	74
16404		15		15		14	14		16	74
1217_04	2	12	4	13		12	12		13	68
15770	2	12	4	13		12	12		13	68
1217_05		14	3	15		14	13		15	74
15762		14	3	15		14	13		15	74
1217A_01	17	17	65	77	18	81	79	52	85	491
11724	17	17	20	44	18	48	46	16	49	275
18330			15	11		11	11	12	12	72
18331			15	11		11	11	12	12	72
18332			15	11		11	11	12	12	72
1217B 01	83	41	28	92	97	98	97	39		575
15250	53	40	28	61	66	67	66	39		420
15781	15	1		16	16	16	16			80
15782	2	-		20	20	20	2			10
16358	13			13	13	13	13			65
1217B 02	78			73	80	82	78	25		416
15766	15			14	15	15	15	1	:	75
15780	14			15	15	15	15			70
19760	17			15	19	10	17	16		102
10700	7			7	7	- 15	7	10		25
10702	10			15	10	10	17	0		05
10705	10			- 15	10	- 19	- 1/	0		95
10/0/	7			7	7	7	7			35
10704	7			- /	· /	- /	- /			35
18/84	/	42		/	/	/	/			35
12170_01		13	1	14	14	13	12			67
15/63		13	1	14	14	13	12			6/
1217D_01			15	11	11	11	11	12		71
18334			15	11	11	11	11	12		71
1217E_01		38	86	72	47	79	80	67	31	500
11725		38	69	59	45	67	67	54	17	416
18333			16	12	1	12	12	12	13	78
18657			1	1	1		1	1	1	6
1217F_01	6	100c	2	9	9	9	9			44
18759	6			7	7	7	7			34
18850				2	2	2	2			10
Grand Total	304	373	325	586	399	744	736	293	492	4252

Technical Advisory Group Meeting ^{3 February 2009}

Analytical Approach/ Modeling Tools Overview

Modeling Tools Overview

- Stakeholder Input
- Contaminant Loads => Load Duration Curves
- Watershed Inventory
- Update Land Use / Land Cover
- Terrain Analysis
- Select Model
- Texas A&M: Ongoing research in watershed

Land Use /Land Cover and Terrain Analysis

□Use of aerial orthophotos & satellite imagery to characterize the vegetation, water, natural surface, and cultural features on the land surface

Several national datasets are available, but dated (1992 or 2001)

Watershed Inventory

Watershed boundaries
County boundaries
Major roads
County Roads
Creeks, drainages, ponds, etc. WWTPs
CAFOs
City or Town boundaries
Census data
Livestock Data
Wildlife Data

Next Steps for Modeling & Analysis

- Land use/land cover and terrain analysis
- Analyze historical data via FDCs & LDCs
- Estimate contaminant loads and calculate river loading capacities at key locations
- Attempt to understand cause-effect mechanisms: sources, transport, stressors, impacts, and impairments
- Assemble SELECT model inputs, identify sources of uncertainty, and develop information and evidence to support stakeholder decision-making.

THANKS FOR PARTICIPATING!

Steve Potter 254-774-6038 spotter@brc.tamus.edu

Texas AgriLife Research at Blackland Research & Extension Center